首页 > 关于我们 > 行业资讯

纳米材料前沿研究成果精选汇总一

发布时间:2017-12-11 11:31:44

1.Adv.Funct.Mater.: 氧化石墨烯新型纳米复合材料

氧化石墨烯新型纳米复合材料



近日,来自日本产业技术综合研究所的Zheng-Ming Wang教授(通讯作者)报道了一种含有石墨烯氧化物(GO)和周期性介孔二氧化硅(PMS)的三明治型纳米复合材料,并首次用同步辐射原位小角度X射线散射测量证实了GO和表面活性剂混合物中尺度有序结构的存在。纳米复合材料中PMS的通道深度和孔壁成熟度受硅酸四乙酯水解反应时间的控制。通过改变烷基三甲基铵(CnTA +)模板的链长, 孔径可以而在1-5nm的范围内变化,并且所有样品都具有高比表面积。作者成功地从GO和PMS中构建了一种新型的纳米复合结构,这种结构具有均匀的孔隙、大的比表面积和孔体积,在吸附和催化剂领域具有更为广阔的前景。

文献链接:Sandwich-Type Nanocomposite of Reduced Graphene Oxide and Periodic Mesoporous Silica with Vertically Aligned Mesochannels of Tunable Pore Depth and Size(Adv.Funct.Mater., 2017, DOI:10.1002/adfm.201704066)

 

2.Adv.Funct.Mater.: 协同配体对混合纳米结构合成的影响机理研究

协同配体对混合纳米结构合成的影响机理研究


混合纳米结构(HN)材料,其设计难点在于对选择混合形成原理的理解,这不仅涉及到纳米颗粒的尺寸与形状,还关系到表面配体的界面现象。近日,哈尔滨工业大学杨明教授(通讯作者)报道了HN的形成机理,过组合实验和理论研究系统地解释了HN形成中复杂的配体作用,成功建立了化学转化过程中分子水平组织与纳米尺度定位的联系。研究结果表明,两种“短”配体(柠檬酸盐和没食子酸)的存在可以诱导具有不同大小的Ag和CdxAg2-xS发生硫化作用来促使异二聚体的不断形成;相比之下,当仅存在柠檬酸盐或没食子酸时,形成核-壳结构或偏心芯-壳结构。

文献链接:From Molecular-Level Organization to Nanoscale Positioning: Synergetic Ligand Effect on the Synthesis of Hybrid Nanostructures(Adv.Funct.Mater., 2017, DOI:10.1002/adfm.201703006)

 

3.Adv.Funct.Mater.: 耐疲劳生物石墨烯纳米复合材料

耐疲劳生物石墨烯纳米复合材料


近日,北京航空航天大学程群峰(通讯作者)报道了一种生物石墨烯复合材料(BGBN), 通过引入第二相诱导各种裂纹抑制机制,如裂纹钉扎,塑性变形,裂纹偏转和裂纹桥接等,可以显着提高石墨烯复合材料的抗疲劳性能。天然珍珠母由于在多个尺度上的复杂界面结构,具有优异的断裂韧性,因而可以有效抑制纳米片平行和垂直方向上的裂纹扩展。此外,BGBN还表现出优异的导电性,这为光电器件,超级电容器,纳米发生器和致动器等柔性电子器件的应用提供了广阔的前景。

文献链接:Fatigue-Resistant Bioinspired Graphene-Based Nanocomposites(Adv.Funct.Mater., 2017, DOI:10.1002/adfm.201703459)

 

4.JACS: 金-铁核壳结构实现高质量活性的二氧化碳还原

金-铁核壳结构实现高质量活性的二氧化碳还原


近日,来自哈尔滨工业大学的王志江副教授和加州理工学院的William A. Goddard教授(共同通讯作者)报道了一种具有金-铁核壳结构的纳米复合材料,能有效提高二氧化碳还原反应的质量活性。理论计算表明,与纯金相比,金-铁复合材料对应的反应中间体(-COOH)形成能更低,因此富有催化潜力。实验证明,在-0.4V条件下,金-铁核壳结构能将二氧化碳几乎全部转变为CO,极大地抑制了HER副反应的发生。此外这种复合材料的质量活性高达48.2 mA/mg,比纯金催化剂高了近100倍。

文献链接:Ultrahigh Mass Activity for Carbon Dioxide Reduction Enabled by Gold–Iron Core–Shell Nanoparticles(JACS, 2017, DOI:10.1021/jacs.7b09251)

 

5.ACS Nano: 多重图案纳米球刻蚀制备周期性3D分层纳米结构

多重图案纳米球刻蚀制备周期性3D分层纳米结构


3D可控的分层纳米结构在电子、生物、光学等领域具有广阔的应用前景,但是其可扩展制备仍然面临巨大挑战。近日,美国加州大学洛杉矶分校(UCLA)的Paul S. Weiss (通讯作者)等人提出了一种制备周期性3D分层纳米结构的通用方法——多重图案纳米球刻蚀(MP-NSL),具有优秀的可扩展性和可调控性。MP-NSL用于周期性垂直阵列状Si纳米管的制备,可以实现3D纳米尺度的控制,包括内/外径、高度/孔深度、坡度等;该方法也可以扩展到其他周期性3D分层杂化纳米结构的制备和应用于其他一系列基体。

文献链接:Multiple-Patterning Nanosphere Lithography for Fabricating Periodic Three-Dimensional Hierarchical Nanostructures(ACS Nano, 2017, DOI: 10.1021/acsnano.7b05472)

 

 6.ACS Nano: 过渡金属修饰的铝纳米晶

过渡金属修饰的铝纳米晶


最近,高丰度的Al元素替代Au、Ag元素在等离激元中的应用得到了广泛关注,特别是Al纳米晶与催化性金属或金属氧化物耦合形成的异质结构十分有望作为等离激元光催化剂。近日,英国剑桥大学的Rowan K. Leary和美国莱斯大学Naomi J. Halas、Emilie Ringe(共同通讯作者)等人通过乙二醇中金属盐的还原和异质成核成功在Al纳米晶表面制备了Pt族(Ru、Rh、Pd、Ir和Pt)和Fe族(Fe、Co、Ni)纳米颗粒。这些修饰的纳米颗粒与Al纳米晶耦合表现出了更强的光吸收和强烈的热点产生,可作为等离激元光催化、表面增强光谱和量子等离激元的理想材料平台。

文献链接:Transition-Metal Decorated Aluminum Nanocrystals(ACS Nano, 2017, DOI: 10.1021/acsnano.7b04960)

 

7.ACS Nano: 碳纳米管的固有手性起源

碳纳米管的固有手性起源


阐明碳纳米管手性起源是实现其潜在应用的关键。目前,流行的观点认为催化剂结构是碳纳米管手性的起源。近日,本田研究院美国公司Avetik R. Harutyunyan(通讯作者)等人采用液态Ga滴催化碳纳米管(CNTs)的生长,排除了催化剂特征的影响来研究CNTs的手性起源,并和固态Ru纳米颗粒做催化剂进行了对比。经过不同手性丰度的分析,他们认为CNTs的手性选择是碳原子簇固有偏好和催化剂诱导共同作用的结果。研究结果有助于CNTs生长理论的构筑,也为特定手性CNTs的合成提供了一种可能的途径。

文献链接:Intrinsic Chirality Origination in Carbon Nanotubes(ACS Nano, 2017, DOI: 10.1021/acsnano.7b03957)

 

8.ACS Nano: 手性无巯基羧酸功能化CdSe量子点:解密配体诱导手性的结构要求


手性无巯基羧酸功能化CdSe量子点:解密配体诱导手性的结构要求

手性半胱氨酸衍生物通过相转移配体交换进行胶体量子点(QDs)的修饰是一种简单而有效的合成手性光学活性QDs的方法。近日,美国新罕布什尔大学Krisztina Varga、怀俄明大学Jan Kubelka和韩国延世大学Milan Balaz(共同通讯作者)等人采用无巯基的手性羧酸覆盖配体(L-和D-苹果酸和酒石酸)成功实现了CdSe QDs中手性的诱导,并研究了诱导产生手性和光活性的机理。研究结果拓宽了对胶体QDs中配体诱导手性产生的认识,有助于手性半导体纳米材料的“量身定制”。

文献链接:CdSe Quantum Dots Functionalized with Chiral, Thiol-Free Carboxylic Acids: Unraveling Structural Requirements for Ligand-Induced Chirality(ACS Nano, 2017, DOI: 10.1021/acsnano.7b03555)

 

9.ACS Nano: 病毒纳米颗粒的结晶、重入熔化和再增溶

病毒纳米颗粒的结晶、重入熔化和再增溶

原子或者小分子的结晶是非常清晰的过程,但是结晶过程在纳米颗粒或者大分子中却难以预测。通过多价离子控制病毒纳米颗粒形成一系列3D超分子结构在生物医药、生物传感、生物纳米材料和催化剂等领域具有广泛的研究兴趣。近日,以色列耶路撒冷希伯来大学Uri Raviv(通讯作者)等人观察了野生猴病毒40(wt-SV 40)纳米颗粒在MgCl2溶液中的缓慢透析行为,研究了其结晶、重入熔化和再增溶过程和机理。热力学模型分析显示Mg2+的熵是整个过程的主要驱动力。

文献链接:Crystallization, Reentrant Melting, and Resolubilization of Virus Nanoparticles(ACS Nano, 2017, DOI: 10.1021/acsnano.7b03131)

10.Adv.Funct.Mater.: 量子点发光二极管(QLED)掺杂的NiO膜作为空穴注入层(HIL)


量子点发光二极管(QLED)掺杂的NiO膜作为空穴注入层(HIL)

PEDOT:PSS是目前量子点LED(QLED)中广泛运用的空穴注入材料。然而,PEDOT:PSS的吸湿性和酸性特征会导致铟锡氧化物(ITO)电极腐蚀从而严重的降低器件的稳定性。相比于有机材料的器件,无机界面缓冲层具有更高的热稳定性,而且,溶液过程的金属氧化物薄膜作为界面缓冲层因其与QD层更好的界面相容性通常比通过真空沉积制备的金属氧化物块体薄膜更有效。近日,上海大学杨旭勇(通讯作者)等人提出了一种金属掺杂NiO薄膜的策略提高QLEDs的效率和稳定性:他们采用Li、Mg、Cu分别做为掺杂元素,结果显示,Cu:NiO HIL基的器件相比于采用PEDOT:PSS的器件表现出更加优良的性能,器件的最大电流效率和内量子效率分别达到了45.7 cd A−1和10.5%, 这是迄今为止所报道的无PEDOT: PSS的 QLEDs最高值,与此同时,器件表现出在5000 cd−2初始亮度下87h的半衰期时间,比PEDOT:PSS基器件要长4倍。这项工作为高性能稳定的QLED器件提供了PEDOT:PSS的替代品。

文献链接:High-Effciency and Stable Quantum Dot Light-Emitting Diodes Enabled by a Solution-Processed Metal-Doped Nickel Oxide Hole Injection Interfacial Layer(Adv.Funct.Mater., 2017, DOI: 10.1002/adfm.201704278)

 

11.Adv.Funct.Mater.: 热控乳液自组装有序量子点(QD)超微粒子用于光降解和太阳能光催化


热控乳液自组装有序量子点(QD)超微粒子用于光降解和太阳能光催化

随着纳米粒子自组装的发展,一个主要的问题是超晶体结构是否能产生集体性质,如相邻的纳米晶之间的耦合,三维空间中激子离域实现能带式的电子传输。一般来说,纳米晶体的表面具有有机配体绝缘层钝化,阻碍邻近的电子转移并在纳米颗粒自组装过程中形成墙,配体去除或者交换对于促进电子转移是一种可行的策略,但通常会改变表面态,导致性能改变或无法控制的团聚。近日,中科院化学所王铁(通讯作者)团队通过热控制的仿真自组装,获得了具有良好的超晶格域的三维超晶格。超晶格间的粒子间距缩小了≈0.3 nm,有机配体在纳米颗粒表面,有利于克服电子转移势垒。有序紧密的超晶格可以促进CdSSe量子点之间的耦合和电子能量转移,因此,QD超晶格与单个QDs相比具有不同的光学性质和增强的光电特性。

文献链接:Ordered Superparticles with an Enhanced Photoelectric Effect by Sub-Nanometer Interparticle Distance(Adv.Funct.Mater.,2017,DOI/10.1002/adfm.201701982)

 

12.Adv.Funct.Mater.: 1D或2D多孔Mo2C纳米结构的合成与产氢应用

1D或2D多孔Mo2C纳米结构的合成与产氢应用

过渡金属碳化物(TMCs)是一大类材料,包括Mo2C,WC,Ti2C3,NbC,NiC3等,由于良好的热稳定性,高电导率,机械性能,超导性能等,在各种领域中有潜在的应用,如储能,环境治理。TMCs在催化方面也很有前景,因为它们的催化性能可以与贵金属媲美,也可以作为贵金属催化剂的支撑支架。值得一提的是,Mo2C由于产氢反应的低成本和高活性而引起不少人关注。近日,华中科技大学黄亮(通讯作者)等人提出了一种可控合成Mo2C多孔纳米结构的方法,包括2D纳米片材料和1D纳米线。该方法通过碳化钴或锌 (MOF) (ZIF-67或ZIF-8)并在高温下添加MoO3纳米片或纳米线,这些结构在很大程度上保留了前体形态,由此产生周期性地多孔纳米结构。多孔Mo2C可以提供大量的活性区域。例如, 2D Mo2C纳米片在一个大的pH范围内的产氢反应中表现出优良的催化性能 (0.1 M HClO4 and 0.1 M KOH),包括一个低起始电位(η= 25 和36 mV vsRHE),小的塔菲尔斜率(40 和 47 mV dec−1),和良好的的稳定。

文献链接:Structure Confned Porous Mo2C for Effcient Hydrogen Evolution(Adv.Funct.Mater.,2017,DOI/ 10.1002/adfm.201703933)

 

13.ACS Nano: 利用ϵ近零的双曲超材料进行等离激元刻蚀

ACS Nano: 利用ϵ近零的双曲超材料进行等离激元刻蚀

迄今,光刻蚀仍是半导体工业最广泛使用的图案技术,但是其分辨率受到光衍射的严重限制,因此应用双曲超材料(HMMs)来提升其分辨率得到了广泛关注。近日,美国密歇根大学L. Jay Guo(通讯作者)等人采用了一种介电常数切向分量(ϵ||)趋于零的II型HMM(Al/Al2O3多层结构)实现了周期性重复图案的等离激元刻蚀。这是因为该材料具有高度各向异性,只允许一种等离激元模式(ϵ近零的HMM作为核)在波导体系中水平传播。基于该性质,这种刻蚀体系也可扩展到其他金属和其他波长的光。

文献链接:Plasmonic Lithography Utilizing Epsilon Near Zero Hyperbolic Metamaterial(ACS Nano, 2017, DOI: 10.1021/acsnano.7b03584)

 

14.ACS Nano: 微波增强纳米金属自催化生长

微波增强纳米金属自催化生长

实现重要工业纳米材料的高效合成必然要求对生长机理的深入了解,从而选择适宜的现代合成手段,如微波合成。微波合成可以提高合成速率和产物品质,但是其作用机理和微波场的影响却知之甚少。近日,美国佛罗里达州立大学Geoffrey F. Strouse(通讯作者)等人分别采用微波场和传统的自催化方法生长金属纳米颗粒,并研究了微波在纳米颗粒形核、生长中的作用,显示其仍然遵循经典的Finke-Watzky模型,建立了生长速率与微波功率之间的联系。

文献链接:Microwave Enhancement of Autocatalytic Growth of Nanometals(ACS Nano, 2017, DOI: 10.1021/acsnano.7b04040)

 

15.ACS Nano: 离子液滴修饰氧化石墨烯制备高能量密度、高电压超级电容器

离子液滴修饰氧化石墨烯制备高能量密度、高电压超级电容器

研发高能量密度的石墨烯基超级电容器的一大难点是兼顾大的离子可接触表面积(SSA)和高的电极密度。近日,加拿大滑铁卢大学Michael A. Pope(通讯作者)等人开发了一种离子液体/表面活性剂微乳液体系(EMImTFSI/t吐温20/水),可以实现离子液体微胶粒在氧化石墨烯(GO)表面的自发吸附,形成致密的GO/离子液体/表面活性剂纳米复合膜,低温热处理后获得rGO电极具有高的SSA,从而获得了很高的质量比电容(302F/g)和封装密度(0.76g/cm3),最终实现了非常优异的体积比电容(室温:144F/cm3,60℃:218F/cm3)。该电极制备方法简单易行,消除了超级电容器制造过程中来自电极方面的阻碍。

文献链接:Decorating Graphene Oxide with Ionic Liquid Nanodroplets: An Approach Leading to Energy-Dense, High-Voltage Supercapacitors (ACS Nano, 2017, DOI: 10.1021/acsnano.7b04467)

 

16.ACS Nano: 双层图法用于复杂环境下单壁碳纳米管手性的精确测定

双层图法用于复杂环境下单壁碳纳米管手性的精确测定

单壁碳纳米管(SWNTs)的手性直接决定其结构和性质,因此准确而方便的测定其手性对纳米管的研究与应用至关重要。目前,研究者们主要采用Kataura法来进行手性相关的研究,但是在复杂环境中难以方便而准确地进行手性测定。近日,北京大学杨娟(通讯作者)等人考虑到SMNTs与复杂环境的相互作用,提出了双层图法来精确测定SWNTs 的手性,比Kataura法更为简洁;可广泛用于碳纳米管手性相关的研究,特别是其方便、精确测定。

文献链接:Bilayer Plots for Accurately Determining the Chirality of Single-Walled Carbon Nanotubes Under Complex Environments(ACS Nano, 2017, DOI: 10.1021/acsnano.7b05860)

 

17.ACS Nano: 单个纳米颗粒的三维超高分辨成像

单个纳米颗粒的三维超高分辨成像

对纳米颗粒进行可控的3D定位对研究其构效关系及应用至关重要。近日,美国天普大学Katherine A. Willets(通讯作者)等人利用纳米滴管和带电基板实现了单个纳米颗粒运动轨迹的实时操控(平衡纳米滴管压力驱动流的力和带电基板的静电吸引力),并通过电阻脉冲电化学装置、光学显微镜和超高分辨荧光成像实现了其运动轨迹的3D可视化(精度高达数十纳米),有望应用于胶体纳米颗粒表面图案化和药物输运等研究领域。

文献链接:Three-Dimensional Super-resolution Imaging of Single Nanoparticles Delivered by Pipettes(ACS Nano, 2017, DOI: 10.1021/acsnano.7b05902)

转自:材料牛

返回上一级

上一篇:工程师必知的金属表面处理方法汇总
下一篇:纳米材料前沿研究成果精选汇总二

收缩

在线客服

  • 乔小姐 点击这里给我发消息
  • 段先生 点击这里给我发消息
  • 杨小姐 点击这里给我发消息
  • 电话:400-7777-029
    加微信:zzzzz22111